5.19.
$X$, $Y$, $Z$ санамсаргүй хэмжигдэхүүнүүд хамааралгүй бөгөөд тархалтын нягтууд нь өгөгдөв.
$f_1(x)=\left\{\begin{array}{lc}
0,1 & 0<x\leq 10 \\
0 & x\leq 0,\,\, x>10\\
\end{array}\right.
$ $f_2(y)=\left\{\begin{array}{lc}
e^y & y\leq 0 \\
0 & y>0\\
\end{array}\right.
$ $f_3(z)=\left\{\begin{array}{lc}
(4-z)/8 & 0<z\leq 4 \\
0 & z\leq 0,\,\, z>4\\
\end{array}\right.
$
$M(5X-2Y+3Z-1)=?$, $D(X\cdot Y-2Z+2)=?$, $D(3X+2Y-2Z-5)=?$
$f_1(x)=\left\{\begin{array}{lc}
0,1 & 0<x\leq 10 \\
0 & x\leq 0,\,\, x>10\\
\end{array}\right.
$ $f_2(y)=\left\{\begin{array}{lc}
e^y & y\leq 0 \\
0 & y>0\\
\end{array}\right.
$ $f_3(z)=\left\{\begin{array}{lc}
(4-z)/8 & 0<z\leq 4 \\
0 & z\leq 0,\,\, z>4\\
\end{array}\right.
$
$M(5X-2Y+3Z-1)=?$, $D(X\cdot Y-2Z+2)=?$, $D(3X+2Y-2Z-5)=?$