4.24.
Хэрэв $X\sim N(a,\sigma^2)$ ба доорхи нөхцөл өгөгдсөн бол $P(X\in[\alpha;\beta])$ магадлалыг ол.
(a) $a=10,\,\, P(8<X<12)=0,38292,\,\, \alpha=5,\,\, \beta=9$.
(b) $a=8,\,\, P(4<X<12)=0,8904,\,\, \alpha=3,\,\, \beta=6$.
(c) $a=-6,\,\, P(-12<X<0)=0,9836,\,\, \alpha=-7,\,\, \beta=-4$.
(d) $a=5,\,\, P(0<X<10)=0,98758,\,\, \alpha=6,\,\, \beta=8$.
(a) $a=10,\,\, P(8<X<12)=0,38292,\,\, \alpha=5,\,\, \beta=9$.
(b) $a=8,\,\, P(4<X<12)=0,8904,\,\, \alpha=3,\,\, \beta=6$.
(c) $a=-6,\,\, P(-12<X<0)=0,9836,\,\, \alpha=-7,\,\, \beta=-4$.
(d) $a=5,\,\, P(0<X<10)=0,98758,\,\, \alpha=6,\,\, \beta=8$.